Chinese scientists reveal a novel signaling pathway for chilling
tolerance in rice
The ability of plants to tolerate chilling stress is fundamental
in determining the growing season and geographical distribution of plants.
Local temperature anomalies caused by global climate change directly threaten
crop production.
Improvement of chilling tolerance in rice varieties requires
clarifying the regulatory mechanisms of chilling signaling pathways.
The primary signal transduction pathway of chilling tolerance in
rice has been established already, but how the diverse components are regulated
is not clear.
OsbHLH002 is one of more than 100 members of the bHLH
transcription factor family in rice and has the highest homology with
Arabidopsis ICE1 protein, which is one of the core members in the cold
signaling pathway in Arabidopsis (hence OsbHLH002 is also called OsICE1).
The research team led by Prof. CHONG Kang from the Institute of
Botany of the Chinese Academy of Sciences has revealed a new mechanism for
chilling tolerance mediated by OsMAPK3-OsbHLH002-OsTPP1 in rice.
The research team had shown in 2009 that overexpression of the
wild rice gene OrbHLH2 enhanced tolerance to osmotic stress in Arabidopsis.
This time they discovered that the cold-activated protein kinase
OsMAPK3 phosphorylates the transcription factor OsbHLH002/OsICE1 directly to
enhance its transactivation activity.
Moreover, OsMAPK3 attenuated the interaction between OsbHLH002
and E3 ubiquitin ligase OsHOS1, which led to reduced ubiquitination and
degradation of OsbHLH002.
The increase of the protein content and transactivation activity
of OsbHLH002 effectively activates the expression of OsTPP1 (encoding trehalose-6-phosphatase)
to promote the hydrolysis of trehalose-6-phosphate, increasing the trehalose
content and enhancing the chilling tolerance of rice.
These results established a novel pathway
OsMAPK3-OsbHLH002-OsTPP1. This pathway transduces the cold signal from the
kinase cascade system to the nucleus and promotes synthesis of an osmotic
protectant to regulate the chilling tolerance in rice.
###
This finding has been published in Developmental
Cell in an article entitled "OsMAPK3 Phosphorylates
OsbHLH002/OsICE1 and Inhibits Its Ubiquitination to Activate OsTPP1 and
Enhances Rice Chilling Tolerance."
The study was supported by the Chinese Ministry of Agriculture,
the Chinese Academy of Sciences and the National Natural Science Foundation of
China.
Nice Website. You should think more about RSS Feeds as a traffic source. They bring me a nice bit of traffic delicious chopped dates Useful information shared..I am very happy to read this article..thanks for giving us nice info.Fantastic walk-through. I appreciate this post.I have Bookmark this webpage,I am sure I will visit this place again soon.Thanks for sharing.
ReplyDelete